Livro: C. I. Jones - Introdução à Teoria do Crescimento Econômico - Capítulo 2
Livro: Charles I. Jones - Introdução à Teoria do Crescimento Econômico (2000)
Pgs. 26-53
"CAPÍTULO 2: "O MODELO DE SOLOW"
14 - (Inicialmente, perdi o fichamento dos pontos 14 a 37, porque algum bug dessa bosta deletou tudo num copia e cola da vida. Devia ter alguma função de acesso a versões de minutos atrás.). Então abaixo vai apenas um resumo porco do que entendi das páginas 26 a 38, que li, fichei e perdi.
15 - Vou passar por cima da matemática que tinha anotado antes. Modelo fechado (por exemplo, poupança = investimento) e sem progresso técnico. Basicamente só há acumulação de capital. Crescimento populacional (imigração) "atrapalha", pois, tudo o mais constante, impede o "aprofundamento do capital", podendo até diminuir o estoque de capital por trabalhador se não houver ao menos o "alargamento do capital" - taxa de investimento por trabalhador que ao menos cubra a depreciação. Se o capital cresce acima do nível necessário para manter o estoque de capital por trabalhador, há crescimento do PIB per capita e riqueza no longo prazo. Logo, a taxa de investimento é fundamental no modelo. Ainda mais que o retorno de escala é constante aqui. A função de produção de Solow é, portanto, Cobb-Douglas. Duplica os insumos e a produção total dobra. O novo patamar de investimento aumenta também os gastos para evitar a depreciação ( Vou passar por cima da matemática que tinha anotado antes. Modelo fechado (por exemplo, poupança = investimento) e sem progresso técnico. Basicamente só há acumulação de capital. Crescimento populacional (imigração) "atrapalha", pois, tudo o mais constante, impede o "aprofundamento do capital", podendo até diminuir o estoque de capital por trabalhador se não houver ao menos o "alargamento do capital" - taxa de investimento por trabalhador que ao menos cubra a depreciação. Se o capital, graças ao investimento, cresce acima do nível necessário para manter o estoque de capital por trabalhador, há crescimento do PIB per capita e riqueza no longo prazo. Logo, a taxa de investimento é fundamental no modelo. Ainda mais que o retorno de escala é constante aqui. A função de produção de Solow é, portanto, Cobb-Douglas. Duplica os insumos e a produção total dobra. O novo patamar de investimento aumenta também os gastos para evitar a depreciação ("Por exemplo, freqüentemente admitimos que d = 0,05, de modo que 5% das máquinas e instalações da economia do nosso modelo se desgastam a cada ano"), logo, haverá um ponto ótimo em que a coisa estaciona: o estado estacionário. O diagrama de Solow meio que mostra. Vou para a versão mais completa dele:, logo, haverá um ponto ótimo em que a coisa estaciona: o estado estacionário. O diagrama de Solow meio que mostra. Vou para a versão mais completa dele, a qual já mostra o consumo como diferença, numa economia fechada, entre produto total e investimento. (Esse "n" é o crescimento populacional e "d" a depreciação):
16 - (Parênteses sobre escala: Recorde que, se F(aK, aL) = a Y para qualquer a > 1, então dizemos que a função de produção apresenta retornos constantes à escala. Se F(aK, aL)> a Y, então a função de produção registrará retornos crescentes à escala, e se o sentido da desigualdade for invertido, os retornos à escala serão decrescentes.)
17 - ...As outras coisas mencionadas... Uma deixando todo mundo "mais rico" e a outra "mais pobre". Isso no modelo e no "tudo o mais constante":
18 - É o que ele chama de estática comparativa.
19 - Em geral, as previsões do modelo de Solow são sustentadas por dados empíricos.
20 - No estacionário, o PIB passa a crescer, mas o PIB per capita não. O que acontece com o crescimento econômico no estado estacionário dessa versão simples do modelo de Solow? A resposta é não há crescimento per capita nessa versão do modelo. Há um ponto ótimo de estoque de capital (K) para cada taxa de investimento (sy), pois a empresa, num mercado competitivo, não vai ficar gastando mais do que retorna marginalmente.
21 - Modelo simples de Solow: Uma economia que no início apresenta um estoque de capital por trabalhador inferior ao montante exigido pelo estado estacionário experimentará crescimento de k e y ao longo de uma trajetória de transição até chegar ao estado estacionário. Com o tempo, contudo, o crescimento se torna mais lento à medida que a economia se aproxima do estado estacionário e, finalmente, o crescimento cessa por completo.
22 - Mais equações: O primeiro termo do lado direito da equação é sk elevado a a-1, que é igual a sy/k. Quanto mais elevado o nível do capital por trabalhador, tanto menor o produto médio do capital, y/k, em decorrência dos retornos decrescentes à acumulação de capital (a é menor que um). Portanto, a declividade da curva é decrescente. O segundo termo do lado direito da equação (2.6) é n + d, que não depende de k, e por isso é representado por uma linha horizontal.
23 - Depois de tudo isso é que Solow vai acrescentar ao modelo o progresso tecnológico. Isto é feito acrescentando-se uma variável de tecnologia, A, à função de produção:
24 - Esse "A" faz com que o PIB per capita cresça no estado estacionário. Solow, porém, não destrinchou como se dá esse ganho de produtividade via progresso tecnológico. Ficou para teóricos/capítulos posteriores. Ele não cai do céu ou é automático.
26 - A álgebra envolvendo a adição da tecnologia não me pareceu trazer/ensinar grande novidade. Nada a anotar.
27 - Investimento: nos modelos de Solow (e na realidade), seu aumento muda o nível de renda per capita, mas não a taxa de crescimento no longo prazo. Tudo o mais constante.
28 - Outro artigo de Solow, de 1957, deu a fórmula de decomposição do crescimento de uma economia:
29 - É a PTF entrando explicitamente no jogo: Esta equação diz que o crescimento do produto é igual a uma média ponderada do crescimento do capital e do trabalho mais a taxa de crescimento de B. Esse termo final, Bnotação/B, é conhecido como crescimento da produtividade total dos fatores ou crescimento da produtividade multifatorial.
30 - Aplicando aos EUA entre 1960 e 1990, fica assim:
31 - ...Dada a maneira como J cálculo é feito, os economistas denominam esse 1,1% de "resíduo" ou mesmo de "medida da nossa ignorância". Uma interpretação desse termo do crescimento da produtividade total dos fatores (PTF) é que ele representa a mudança tecnológica; observe que, em termos da função de produção da equação (2.7), B =A ¹-ª.
32 - Anos 70 e as diversas explicações para o "fracasso" (possivelmente tendo a maioria delas alguma boa dose de razão): Várias explicações foram dadas para a redução no ritmo de crescimento da produtividade. Por exemplo, o substancial aumento nos preços da energia em 1973 e 1979. (...) Outra explicação pode envolver a mudança na composição da força de trabalho ou o deslocamento setorial na economia da indústria de transformação (onde a produtividade da mão-de-obra tende a ser mais alta) para os serviços (onde a produtividade da mão-de-obra é freqüentemente baixa). Essa explicação é apoiada por evidências recentes de que nos anos 1980 o crescimento da produtividade ocorreu na indústria de transformação. É possível que uma redução no ritmo das despesas com pesquisa e desenvolvimento (P&D) em fins dos anos 1970 tenha também contribuído para a menor produtividade. Ou talvez o que deva ser explicado não são os anos 1970 e 1980, mas os anos 1950 e 1960: nesse período o crescimento pode ter sido artificial e temporariamente alto nos anos que se seguiram à Segunda Guerra Mundial, porque o setor privado passou a empregar tecnologias criadas para a guerra. Finalmente, e talvez com alguma ironia, vários economistas apontam para a revolução da tecnologia da informação associada ao uso difundido dos computadores. De acordo com essa hipótese, o crescimento se tornou temporariamente mais lento enquanto a economia se adaptava aos métodos de produção de alta tecnologia e um boom de produtividade aponta no horizonte. Contudo, o cuidadoso estudo da redução no ritmo de crescimento da produtividade não conseguiu apresentar uma explicação exata.
33 - Tigres asiáticos, Brasil, Itália e Chile no período analisado: Primeiro, embora as taxas de crescimento do produto por trabalhador no Leste Asiático sejam de fato notáveis, as taxas de crescimento da PTF não são tão significativas. Vários outros países como Itália, Brasil e Chile também registraram um crescimento rápido da PTF:
34 - Cingapura é um caso extremo, com um crescimento ligeiramente negativo da PTF. O rápido crescimento do produto por trabalhador pode ser inteiramente atribuído ao crescimento do capital e da escolaridade.
.
Comentários
Postar um comentário